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The behaviour of concentric double emulsion droplets in linear flows is examined 
analytically, for the case when both fluid-fluid interfaces remain nearly spherical, 
and numerically, for the effect of finite interface deformation. The theoretical 
analysis is used to calculate the velocity fields interior and exterior to the particle, 
the first effects of flow-induced deformation, and the effective viscosity of a dilute 
emulsion of compound droplets. The numerical simulations allow for a complete 
investigation of the finite deformation of both the outer drop and the encapsulated 
particle. For concentric multiphase particles, there appear to be two distinct 
mechanisms of globule breakup : (i) continuous extension of the globule corresponding 
to non-existence of a steady particle shape or (ii) contact of the two interfaces a t  the 
globule centre, owing to incompatibility of the steady inner and outer interface 
shapes, even though the globule is only modestly deformed. Finally, the effect of 
different flow-types, i.e. uniaxial or biaxial extensional flows, is shown, in one 
example, to suggest breakup of the inner droplet even though the outer droplet 
maintains a steady shape. 

1. Introduction 
Fundamental studies of the dynamics of encapsulated particles or drops have 

appeared recently in the fluid mechanics literature, cf. the review article by Johnson 
& Sadhal (1985). An encapsulated particle is a particle or drop (or, more generally, 
multiple particles or drops) that is completely engulfed by a second immiscible fluid 
drop. This larger drop is itself suspended in an immiscible fluid. I n  order to 
distinguish these compound ‘double emulsion ’ drops from single-phase drops, which 
have been studied widely for many years, we will follow the precedent of previous 
authors and call them globules. 

Globules exist in a wide variety of technologically significant processes. The most 
well-known application of double emulsions is their use as liquid membranes for 
selective mass transport, The use of liquid membranes for the separation of 
hydrocarbons was proposed originally by Li (1971 a ,  b)  and has subsequently been 
extended to artificial blood oxygenation, water purification, recovery of heavy 
metals, and even the controlled release of drugs (Maugh 1976). The globules are 
efficient for mass transfer processes because of the high interfacial area per unit 
volume that can be generated, coupled with the short diffusion distances associated 
with transport between phases. The globules typical of these applications are very 
small (the undeformed radii are generally 10-3-10-1 cm) so that inertial effects are 
small and Stokes equations can be used as a first approximation. Because aspects of 
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several industrial operations involve multiphase droplets rising through an otherwise 
quiescent fluid, the majority of existing theoretical analyses of these systems have 
focused on the sedimentation problem. 

Initial low-Reynolds-number studies of streaming flow past drops coated with thin 
fluid films were presented by Johnson (1981) and Johnson & Sadhal(i983). Rushton 
& Davies (1983) studied the translation of concentric spherical droplets in an infinite 
fluid. This work has been extended recently by Sadhal & Oguz (1985) who allowed 
for non-concentric, though spherical, drops and accounted for the relative motion of 
the inner and outer drops, leading to an investigation of the stability of eccentric 
configurations of encapsulated particles. Finally, the first effects of inertia for 
concentric spherical drops were calculaced by Brunn & Roden (1985). These analyses 
all have in common the assumption that the shapes and locations of the fluid-fluid 
interfaces are known a priori. 

The first corrections to the inner and outer drop shapes were obtained by 
Chervenivanova & Zapryanov (1988), based upon the velocity fields of Sadhal & 
Oguz. The most interesting result of the analysis is that both drops deform a t  zero 
Reynolds numbers, unlike a single sedimenting drop which remains exactly spherical 
a t  zero Reynolds number, independent of the magnitude of the capillary number 
(Taylor & Acrivos 1964). Further, the flow created by a sedimenting globule causes 
the outer drop to deform into a prolate spheroid while the inner drop deforms into 
an oblate spheroid. Of course, these deformation analyses are limited to asympto- 
tically small distortions from a sphere. 

High-Reynolds-number studies of encapsulated particles have been concerned 
primarily with centring of bubbles in fluid droplets (Tsamopoulos & Brown 1987). 
These problems arise, for example, in the formation of spherosymmetric shells of 
metal and glass that are used as fuel targets in inertial confinement fusion studies and 
in particles that have been suggested as additives in high-strength composite 
systems. It is interesting to note that the interaction between flow-induced prolate 
and oblate shapes of the inner and outer droplets, observed in the low-Reynolds- 
number work discussed above, is also found in these higher-Reynolds-number 
studies.? 

One aspect of the dynamics of compound drop (or globule) motion that has not 
been studied from a theoretical point of view is the condition (or conditions) for 
globule breakup. It is evident that the effective use of compound drops as liquid 
membranes will be hindered by breakup of the globules. The only experimental work 
that we know of is due to Ulbrecht, Stroeve & Prabodh (1982) and Stroeve & 
Varanasi (1984), who conducted experimental studies of the breakup of double 
emulsions in simple shear flows. These studies suggest that useful predictions can be 
achieved by direct analogies with single-phase drop breakup studies, a t  least when 
the globule contains many subdrops, as is often the case in double emulsions. Closely 
related to this work on compound drops is the work of Davis & Brenner (1981), who 
used a small deformation analysis to examine the deformation of a fluid drop, with 
a solid sphere occluded at the centre, in a simple shear flow. Under certain conditions 
(the viscosity ratio of the two fluid phases is order one and the flows are weak), the 
presence of the solid phase appears to destabilize the globule in the sense that the 
globule is more deformed (and thus possibly closer to breakup) than i t  would be 
without the occluded solid. Davis & Brenner also calculated the rheological 
properties of a dilute suspension of these encapsulated particles. 

t We wish to thank Professor R. A. Brown for directing our attention to these investigations. 
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Our concern in the present paper is the deformation and breakup of compound 
multiphase droplets in a general linear flow a t  low Reynolds number. The 
corresponding problem of deformation and breakup of single-phase droplets in thc 
creeping flow limit owing to an imposed velocity gradient has been widely studied 
and interested readers are referred to review articles by Acrivos (1983) and Rallison 
(1984). An important inference from these latter studies is the necessity of studying 
the deformation and breakup problem in so-called strong flows, in which the 
magnitude of the strain-rate exceeds the magnitude of the vorticity (e.g. Bentley & 
Leal 1986). Hence, in the present work, we examine the effect of a general linear flow 
on a concentric double emulsion drop using a small deformation approximation, and 
the specific case of an axisymmetric extensional flow using numerical methods based 
upon the boundary integral technique. The concentric configuration is simpler than 
eccentrically configured globules and more straightforward than the case of multiple 
subdrops, but it is not just a mathematical diversion. Double emulsions consisting of 
a drop containing a single internal drop have been prepared experimentally by 
Florence & Whitehill (1981). Furthermore, this study will generalize the results of 
Davis & Brenner (1981) to account for the presence of an occluded drop of arbitrary 
viscosity and to consider a general linear flow instead of a simple shear flow. 

The hydrodynamic stability of the concentric drop configuration has not been 
examined here. The thermodynamic stability of similar multiphase drops, which 
depends on the interfacial tensions of all three fluid-fluid pairs, was addressed by 
Torza & Mason (1969, 1970). Also, Torza & Mason (1970) briefly discussed the 
behaviour of double emulsions in simple shear flows. 

The small-deformation theory presented in the first part of this paper demonstrates 
the initial effects of flow-induced deformation and examines the effects of the 
different fluid properties. In  addition, the effective viscosity of a dilute emulsion of 
these particles is calculated. Cases of finite deformation and possible breakup are 
addressed in the second part of this paper using a complete numerical solution. As 
suggested by Davis & Brenner, the presence of the inner droplet may lead to globule 
breakup a t  a smaller capillary number than would have been necessary had the inner 
phase not been present. The numerical results illustrate that breakup may occur 
owing to large-scale stretching of the globule into a cylindrical shape, similar in many 
respects to the breakup of single-phase droplets. However, the numerical simulations 
also illustrate systems where globule breakup is more likely to occur because the 
inner droplet causes the outer interface to rupture without excessive globule 
deformation. In addit'ion, an example is documented where the inner droplet 
approaches breakup because of flow-induced deformation caused by circulation 
inside the globule even though the globule itself maintains a steady, nearly spherical 
shape. 

2. Problem statement 
Consider the double emulsion droplet shown in figure 1.  We restrict our study to 

the case where the centres of mass of the two droplets remain coincident. The 
uiideformed radius of the outer droplet is R,, the undeformed radius of the inner 
droplet is R, and K = R,/R,. The three distinct Newtonian fluid phases are immiscible 
with viscosities pi and densities pi. The interfacial tension (assumed constant) of the 
i j  interface is denoted by vij. With respect to a coordinate system fixed to the ccntrc 
of the globule, we consider the case where the imposed flow field varies linearly with 
position. This provides a good approximation for many general flows for which the 
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FIGURE 1. Concentric double emulsion droplet. Definition of variables. 

velocity gradient varies on a lengthscale that is large compared to R,. Thus, far from 
the droplet, we assume that the velocity is given by 

where r is the velocity gradient tensor, which is traceless as a consequence of 
continuity. Alternatively, the undisturbed velocity field may be decomposed into a 
symmetric and an antisymmetric part, in which case (1) may be written as 

u, = E * x + @  A x (2) 

where E, the rate-of-strain-tensor, is the symmetric part of I' and o is the vorticity. 
In this paper we present an analytic solution for the velocity and pressure fields 

internal and external to the globule for the general linear flow (1) or (2). These 
analytic calculations are restricted to the case where both the inner and outer 
droplets remain nearly spherical and include the first corrections to the shapes of the 
droplets. Specific computations are presented for the case of axisymmetric 
extensional flows where w = 0 and E has the diagonal form 

€ = k + G ( :  - 1  ;l 0 0 I). 
(3) 

The + sign corresponds to a uniaxial extensional flow and the - sign corresponds 
to a biaxial extensional flow. The term G denotes the shear rat.e. 

When significant deformation occurs, as must certainly happen if the globule 
begins to break, the analytic (small-deformation) procedure breaks down and we 
must resort to a numerical solution of the problem. This is described in $4. In  this 
case, we also restrict our calculations to the axisymmetric flows described by (3). 

For the small droplets typical of many processes involving double emulsions, 
inertial effects are negligible and the fluid motion in each phase is governed by the 
quasi-steady Stokes equations. Non-dimensionalizing all lengths by I, = R, , velocities 
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by u, = GR,, times by t ,  = G-l and the pressure in phase i by p,, = ,uciu,/R1, the 
governing equations for phase i are 

VZU, = v p i ,  ( 4 a )  

v - u i  = 0. (4b)  
Here (u i ,p i )  represent the dimensionless velocity and pressure fields in phase i .  The 
boundary conditions for the three phases are 

u, = r - x ,  p + p ,  as IxI-too, (5a )  

u, = u, for x,ES,,, (5b) 

u, = u3 for x, E S,,, (54 

( 5 4  
1 

n2.T,-A,,n,-T, = -n,(V,.n,) for x 6 ~ S 2 , ,  
@O 

where A -&, P3 sz=--, (732 
2 1  - 

Pl (72 1 

QR, P2 - @o A 2 1  K GRIP' and we also define Ci = - - - s z .  Co = - 
g 2 1  (732 

The stress tensor T has the usual definition 

T = - p l + V u + ( V ~ ) ~ ,  

In these equations X ,  denotes the interface separating phases i and j, ni is the unit 
normal directed outward from phase i and V,.n is the local mean curvature of the 
interface (see figure 1) .  The outer capillary number C, is defined using the properties 
of phase 1 and provides a measure of viscous forces responsible for deformation of the 
globule relative to interfacial tension forces that resist deformation. Likewise, Ci 
denotes a representative capillary number for the inner drop. The dimensionless 
parameters A,,, A,, and SL represent ratios of fluid viscosities and interfacial tensions, 
respectively. 

The fluid-fluid interfaces evolve according to the kinematic conditions, which may 
be stated as 

where x, denotes a point on the interface. 
We are interested in studying the deformation and breakup of double emulsion 

droplets as a function of the five dimensionless parameters : A,,, ha,, Co, Ci (or a) and 
K = R,/R,. Furthermore, in addition to direct dependence on Co, the type of external 
flow, for example biaxial or uniaxial extensional flow, will play a role in the breakup 
problem and will be studied numerically. 

The study of time-dependent phenomena using the quasi-steady Stokes equations 
requires that both local and convective inertial effects be small compared to  viscous 
effects. For steady flow situations this requires that 
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The degree of interfacc deformation is characterized by the dimensionless 
deformation parameter D = (L - B ) / (  L + B) ,  where L and B represent the half-length 
and half-breadth of the interface position, respectively. The half-length L will always 
be measured in the z-direction and the half-breadth B in the radial (I) direction (see 
figure 1). With this definition, prolate spheroidal shapes are characterized by D > 0 
and oblate spheroidal shapes by D < 0. 

3. Small deformation analysis - analytic solution 
In this section. we use the established method of domain perturbations to outline 

an analytic solution for the velocity and pressure fields internal and external to a 
compound multiphase drop that is immersed in a general linear flow field. The results 
of the analysis are summarized in $4. In order to  make analytical progress, the drops 
comprising the double emulsion globule are treated as concentric, in the sense that 
their centres of mass are coincident, and their shapes are treated as nearly spherical. 
In the domain perturbation procedure, the velocity field is calculated everywhere 
using the continuity of velocity and continuity of tangential stress boundary 
conditions a t  the undeformcd, spherical interfaces. This produces the first term in an 
asymptotic expansion for the velocity field based upon a small drop deformation. 
The resulting flow generates viscous stresses that tend to deform the globule and the 
normal stress balance is used to determine a first approximation to the perturbed 
stcady-state shape. 

The basic assumption in the analysis reported in this section is that the inner and 
outer drops remain nearly spherical. There are two independent limits where a drop 
will remain nearly spherical. The first is low capillary number (in other words, weak 
flows or large intcrfacial tensions) and the second is a large internal viscosity. We will 
deal principally with the low C case. 

The most general form of the solution to Stokes equation is given by Lamb (1932) 
in terms of an expansion in spherical harmonics. Lamb's general solut,ion is 
particularly well-suited to problems with sphcrical symmetry and has bccn applied 
to the related problem of single-phase drop deformation by Taylor (1932), Cox 
(1969), Frankel & Acrivos (1970), Barthks-Biesel & Acrivos (19734 and Rallison 
(1980). We follow a similar procedure here, although we are content with only the 
leading-order approximation for the general case A,, = O(1) and A,, = O(1). This 
provides good physical insight and motivates the numerical simulations discussed in 

As a result of the assumption of small deformation, both the governing equations 
and the applicable boundary conditions are linear. Since the droplets are assumed 
concentric and the undisturbed fluid motion is characterized by the  second- 
order tensor I', the velocity and pressure fields in the suspending fluid (phase 1 :  
r = 1x1 2 1)  may be written in the following general form: 

§6. 

The external flow, represented by E and o. is prescribed and the last three terms on 
the right-hand side of equation (713) represent the disturbance motion caused by the 
globule and decay as 1x1 + co. 
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The velocity and pressure fields in the inner droplet (phase 3 : 1x1 < K )  must remain 
bounded as r + 0 and have the general form 

r2 1 ' x - E - x  
u,(x) = 2F3E.x+G,w A x+- H 3  r2 [ 5 E - x  - 2x - 

21 

p 3 ( x )  = p$ + H ,  x * E .  X. ( 8 b )  

In  the annular region (phase 2 : K < 1x1 < l), spherical harmonics of both positive and 
negative degree are necessary so that 

D,w A x H,r2  + - [ 5E. x - 2x ____ 
21 + 

7-3 

B, X. E - x  
PAX)  = Pz*+ T 5  +H,  x . E .  x. 

In these equations, p t  and p $  are constant pressure terms which are related top, and 
the curvature of the undeformed spherical interfaces. The corresponding stress fields 
are straightforward to calculate and are listed for completeness in Appendix B. 

The drop shape is approximated by an expansion in surface spherical harmonics, 
where we retain, a t  leading order, only the second-order term since the flow field is 
described by a second-order tensor (Rallison 1980) (the zero- and first-order 
harmonics correspond to translation and dilatation of the drop only, Cox 1969). 
Hence, the shapes of the fluid-fluid interfaces are assumed to be of the form 

A,, x - E - x  
r = l +  for x, E S,,, 

r2 

for x, EX,, . 1 
The coefficients A,, and A,,, which describe the magnitude of the leading-order shape 
correction, must be determined as part of the solution to the problem. Equation (10) 
emphasizes the fact that  the steady drop deformation, a t  the leading-order 
approximation, depends only on the rate-of-strain tensor E and is independent of the 
vorticity. Clearly, for this small deformation analysis to be valid, the magnitudes of 
both A,, and A,, must be small. We will make this qualitative statement more 
precise below. Higher-order harmonics would appear in (10) if additional terms in an 
asymptotic expansion for the velocity field were desired. These higher-order terms 
have been calculated for the single-phase drop problem by BarthBs-Biesel & Acrivos 
(1973a), but the algebra was very complicated and required the use of a computer. 
We are content here to calculate the leading-order term in order to develop physical 
insight about the velocity field and the small deformation produced by the viscous 
stresses and then use the numerical analysis to study finite deformations. 

If we define the shape function as 

= constant = 0, 1 A,, x . E * x  
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then the unit outward normal to the outer interface can be calculated from 
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It follows that the local mean curva,t,ure of the slightly deformed outer surface is 
given by 

where the superscript O denotes the normal to the spherical surface. Similarly for the 
inner surface we ha.ve 

V,.n, = 2+4A,,nz.E.n;, (1 la)  

V,.n - -  2+4A,,n:.E.n: . ( l i b )  
, - K  l L  1 

Following standard procedures of the domain perturbat,ion technique, the O( 1 )  
velocity field is calculated by applying continuity of velocity, continuity of 
tangential stress, and the kinematic condition on the undeformed spherical surfaces 
(x, = n;, r = 1 on S,, and x, = Kn:, r = K on fJ32). The normal stress balance is then 
used to calculate the first correction to the drop shape. Further details for the 
solution of this problem may be found in Appendix A. Using this solution the 
equations for t,he shape functions A,, and A,, may be expressed in the form 

The functions h,, and h,, are also listed in Appendix A. The form of the solutions (12) 
confirms the requirements, C, + 1 and Ci 4 1 for validity of the small deformation 
analysis for A,, = O(1) and A,, = O(1).  It is evident from (10) and (12) that both 
drops initially deform into ellipsoids when these conditions are satisfied. Although 
the time evolution of the shape functions A,, and A,,  could be determined by using 
the complete form of the kinematic conditions (6), rather than n - u  = 0: this is 
algebraically tedious and is not attempted here. Instead, we will illustrate the time- 
dependent evolution of the interfaces for finite deformation using the numerical 
simulations discussed in 8 6. 

Before discussing the details of the approximate solution from this section, we note 
that it can be used to determine the effective viscosity of a dilute suspension of 
spherical double emulsion droplets. The analysis of the bulk stress in a dilute 
suspension of particles has been discussed by Batchelor (1970). The bulk stress, Z, is 
related to the rate-of-strain tensor E by 

L'= -p/+2E+L'(*', (13) 

where 

represents the contribution to the bulk stress due to the presence of the particles. 
Here, 4 is the particle volume fraction and the integration is over the outer surface 
of the globule. Because the solution presented above treats the globule as spherical, 
it  is straightforward to show that the only contribution to this integral comes from 
the B, term of the solution. Hence, 

(15) L'"' = - #Bl E ,  



Breakup of concentric double emulsion droplets in linear jlows 131 

so that a dilute emulsion of concentric spherical droplets behaves as a Newtonian 
fluid with an effective viscosity, p*,  given by 

The magnitude of the capillary number plays no role a t  this level of approximation. 
Globule deformation, which depends on both the magnitude of the capillary number 
and the flow type, leads to more complicated rheological properties (e.g. normal 
stress differences). This has been discussed for a dilute suspension of single-phase 
droplets by Schowalter, Chaffey & Brenner (1968), Frankel & Acrivos (1970) and 
Barthks-Biesel & Acrivos (1973 b) .  

4. Small deformation analysis - results 
We begin our discussion of the analytical results by illustrating typical streamlines 

internal and external to the globule. In figure 2 we exhibit the streamline patterns 
for K = 0.2 and 0.8. The other parameters are fixed a t  A,, = l .O ,A, ,  = 1.0. As 52 and 
@, appear only in the normal stress balance, they play a role in the deformation of 
the interfaces, but do not effect the velocity field a t  this order of approximation. The 
arrows on the streamlines shown in figure 2 correspond to the case of a uniaxial 
extensional flow. However, because of the assumptions of spherical and concentric 
drops, the streamline patterns are identical for uniaxial or biaxial extensional flows ; 
only the direction of flow is reversed in these two cases. 

In  figure 2, we observe two vortical flow patterns interior to the globule. The 
important point to notice is that the externaI fluid motion creates a recirculating flow 
in the annular region that drives a flow in the inner droplet with an opposite sense 
of rotation. The effect of changing A,, and A,, was examined and found to have very 
little qualitative effect on the streamline pattern with the change limitcd to the 
magnitude of the velocity. 

The streamline patterns shown in figure 2 suggest an interesting feature of the 
flow-induced deformation of the globule. The external uniaxial flow will tend to 
deform the overall globule into a prolate spheroidal shape. Meanwhile, the steady 
interior flow generated in the annular region creates a biaxial extensional flow in the 
neighbourhood of the inner droplet. This deforms the inner droplet into an oblate 
spheroidal shape. Exactly the reverse situation would occur if a biaxial extensional 
flow were imposed at  infinity: the overall globule would deform into an oblate 
ellipsoid, but the inner droplet would be exposed to  a uniaxial extensional flow and 
thus deform into a prolate ellipsoid. A typical series of steady-state shapes is shown 
as a function of capillary number in figure 3 for a globule immersed in a uniaxial 
extensional flow. The results for the corresponding biaxial extensional flow are shown 
in figure 4. The final shapes shown in figures 3 and 4 have both developed a pinch at 
the droplet centre. This may not be physically correct, as it may occur because the 
asymptotic solution is being used outside its range of validity and numerical methods 
must be used to address these large distortions. For small deformations, the 
magnitude of deformation of both the inner and outer droplet increases linearly with 
capillary number (equation (12)). Furthermore, the deformation of the inner droplet 
is much smaller than the deformation of the outer droplet. Of course, the basic reason 
for this is that the smaller radius of curvature of the inner droplet makes interfacial 
tension more important, i.e. C, = C, KA,,/Q. Finally, this simultaneous existence of 
prolate shapes containing flow-induced oblate shapes, and vice versa, is similar 
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FIQURE 2. Streamlines in and around the compound droplet as a function of the internal 
droplet size, A,, = A,, = 1.0 (A)  K = 0.2; (6) K = 0.8. 
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FIGURE 3. Deformation of a double emulsion droplet in a uniaxial extensional flow; 
@,=0,0.04,0.08,0.12. 

3 

FIGURE 4. Deformation of a double emulsion droplet in a biaxial extensional flow ; 
@,=0,0.04,0.08,0.12. 

qualitatively to observations of Brunn & Roden (1985), Chervenivanova &, 
Zapryanov (1988) and Tsamapoulos & Brown (1987), even though the base-flow 
situations are very different. 

It is well-established that the critical capillary number for drop breakup is 
dependent on the nature of the flow field. For example, in the single-phase case, drops 
of any viscosity ratio can be burst in a steady two-dimensional extensional Aow. 
However, for steady simple shear flow there exists a limiting value of the viscosity 
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ratio above which breakup does not occur. Furthermore, even the nature of an 
extensional flow (uniaxial versus biaxial) can lead to differences in the breakup of 
single-phase droplets. Small deformation studies of single-phase droplets in biaxial 
and uniaxial extensional flows have been performed by Barthits-Biesel & Acrivos 
( 1 9 7 3 ~ )  and a numerical study of finite deformation of droplets a t  zero Reynolds 
number in both biaxial and uniaxial flows is presented by Stone & Leal (1989 u, b ) .  
The most notable feature regarding breakup a t  low Reynolds numbers is that the 
critical capillary number for non-existence of steady solutions (i.e. ‘burst ’) is larger 
in a biaxial flow. This is particularly relevant to this study where one drop 
experiences a uniaxial straining flow, while simultaneously the other drop experiences 
a biaxial straining flow. Although a complete investigation of the conditions for 
breakup of globules must await the finite deformation numerical study in $4, the 
small deformation analysis does provide useful qualitative insight. 

In particular, one question that we can consider is the effect that the presence of 
the inner droplet has on the overall deformation of the globule. I n  figure 5 we present 
a plot of the globule deformation, Douter, versus capillary number for four different 
radius ratios, K = 0.1,0.3,0.5 and 0.7. The curve for K = 0.7 stops when the analysis 
predicts that the inner and outer interfaces touch. The other parameters are fixed a t  
the values A,, = 1.0, A,, = 1.0 and 52 = 1.0. Although this plot is extended to include 
finite deformation, we do not cxpect that the present analysis will providc more than 
a qualitative indication of the dependence of deformation on capillary number and 
K for such cases. Clearly, however, the effect of increasing K is to significantly increase 
the deformation of the outer interface a t  a given value of the capillary number. This 
result is in agreement with the work of Davis & Brenner (1981), who observed that 
in a simple shear flow, the effect of increasing the size of an occluded rigid particle 
was to increase the droplet deformation. This suggests that breakup with the 
occluded phase present may occur a t  a reduced value of the capillary number. 
However, it  should be remarked that the inner droplet deforms toward the narrowing 
waist of the outer droplet (cf. figures 3 and 4), so that significant hydrodynamic 
interactions between the two interfaces will occur. This interaction between the two 
fluid-fluid interfaces, a result of finite deformation, is not taken into account in the 
small-deformation theory. As a consequence, a definitive conclusion about the effect 
of the third phase on conditions for breakup is not possible on the basis of the small 
deformation alone. This question must be answered via a numerical investigation 
including finite deformation ($55-6). 

Next we examine the effect of varying the fluid properties. As is clear from (12), 
the ratio of interfacial tensions 52 in this srnall deformation limit only influences the 
deformation of the inner droplet and has no effect on deformation on the overall 
globule. In effect, variation of 52 is equivalent to changes in the capillary number for 
the inner drop, Ci. Hence for a given outer capillary number Co, more deformation 
of the inner droplet occurs for smaller 52 and larger K .  

The effect of changing the viscosity of the occluded phase is examined in figure 6 
by varying A,,, for fixed A,, = 1.0,Q = 1.0 and K = 0.5. In figure 6(a ) ,  the 
deformations of the outer globule and inner drop are shown as a function of the 
capillary number C,, by the solid and dashed lines, respectively, and in this case 
C, = 0.5C0. It can be seen that the deformation of both drops increases slightly with 
increase of A,, > 0.1. The increased deformation of the inner drop as the viscosity of 
the encapsulated phase is increased is in agreement with previous experiments and 
small-deformation studies of single-phase drops, which show that for A > O( I) ,  
deformation increases as the viscosity ratio increases. In  figure 6 ( b )  we show similar 
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FIGURE 5.  Overall globule deformation D,,,,, as a function of capillary number. K = 0.1,0.3,0.5 
and 0.7.  The K = 0.7 curve is stopped when the analysis predicts that  the interfaces overlap. 

calculations for K = 0.1. For this small encapsulated particle, the deformation of the 
globule is effectively independent of the viscosity of the occluded phase as values of 
Douter differ by less than 1 % for lop2 d A,, d 10,. The inner drop is barely deformed 
since the inner capillary number is always very small, Ci = O.lC,. 

For completeness, we also examine the effect of varying A,, for two cases K = 0.5 
and K = 0.1 as shown in figure 7. For fixed values of A,, and C,, increasing A,, is 
equivalent to increasing p, and p3 by the same amount. This has the effect of 
increasing the capillary number for the inner drop, Ci = @,A,, K / Q .  Thus, the effect 
of increasing A,, is to slightly increase the degree of globule deformation by 
effectively making the inner medium more viscous, as well as significantly increasing 
the deformation of the inner drop by increasing Ci. Nevertheless, a t  a given Ci, the 
degree of deformation of the inner drop is smaller than that of the equivalent outer 
drop at a given @,, which implies that the characteristic velocity chosen to define Ci 
is not simply G but presumably depends on This is also evident by examining the 
deformation curves for the inner drop at different 

If we combine all of the above results and assume that increased deformation of 
the globule leads to breakup at a lower value of the capillary number, then the 
conclusion from figures 5, 6 and 7 is that breakup is enhanced when the size of the 
interior drop is increased or the interior fluids are more viscous. Whether these 
conclusions will carry over to finite deformation remains to be seen and will be 
examined in $6. 

Finally, we present a brief discussion of the rheology to be expected of a dilute 
emulsion of multiphase globules. The contribution to the bulk stress because of the 
presence of particles is summarized in $3. Following the notation of Davis & Brenner 
(1981), the bulk viscosity, p* can be written in the form 
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FIGURE 6. Deformation of the inner (dashed line) and outer (solid line) droplets due to varying 
Aa2. h,, = 1.0, = 1.0. (U) K = 0.5; ( b )  K = 0.1. 
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FIGURE 8. The velocity profile in the annular region of the globule in the limit K * 1 .O. K = 0.95. The 
boundary of the globule acts effectively as a no-slip surface in this limit so that a dilute emulsion 
of these droplets behaves as a suspension of rigid spheres. 

where 

The coefficients Si only depend on K and have the specific forms 

6, = 4 - 2 5 K 3  -k 4 2 K 5  - 2 5 K 7  -b 4K10,  

6, = 1 5 - 4 2 ~ ~ + 3 5 ~ * - 8 ~ ’ ,  

6, = 4 - 1 o K 3 + l 0 K 7 - 4 K 1 O ,  

In the limit A,, + co ( A 2 ,  and K finite) this expression reduces to the result, of Davis 
& Brenner (1981) for a solid sphere occluded at the globule centre. As discussed by 
Davis & Brenncr, two other limits follow naturally. In the limit A,, -+ 00, the case of 
a very viscous shell of fluid, equation ( 3 0 )  yields K e 0 ,  which is the well-known 
Einstein viscosity for a suspension of solid spheres. Xotice that this is true for any 
K and A,, and simply says that the interior fluid plays no part in the rheology if the 
liquid membrane, however t,hin, is much more viscous than the suspending fluid. The 
effect of the viscous membrane is to reduce the velocity in the annular region to 
O( so that the effective deformation rate in the neighbourhood of the inner drop 
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is very small. The limit K +0 reproduces the results of Taylor (1932) for the viscosity 
of a suspension of single-phase liquid droplets 

Another interesting limit is found by considering the case of a very thin liquid 
membrane, K +  1. In this case we find 

- 
K 

1 75R2 + ~ (140 - 665R) 

4 + 0[(~~)1,  K =  1 +A,, 
1 

175K2 + Rh,,( 140 - 490q + - [140K+h2,(84-476R)] 
1 + A 3 2  

where R = 1 - K .  Hence, provided A,, = O( 1) the limit K +  1 (R+O) produces K+O, 
which is the result for a suspension of rigid spheres. This dynamic property of thin 
liquid membranes to reproduce solid sphere-like rheological behaviour is best 
appreciated by examining the velocity field. In figure 8 we show a magnified view of 
the fluid streamlines for K = 0.95. Because of the recirculation set up internal to the 
droplet, the fluid velocity is forced to change directions over a very short distance. 
In order to satisfy continuity of velocity a t  both interfaces, the tangential velocity 
is reduced to zero, as it would be a t  a solid boundary. Therefore, the viscosity is 
equivalent to a suspension of rigid spheres. This result is independent of the viscosity 
of the inner phase. The equivalent consequence of thin membranes for sedimenting 
double emulsion drop1et)s was pointed out by Rushton & Davies (1983). 

5. Numerical study of finite deformation: application of the boundary 
integral method 

Although the analysis presented above provides insight and is straightforward, it is 
nonetheless restricted to  small deformations. The effect of large deformations and the 
possibility of breakup are clearly interesting and significant problems. However, as 
is characteristic of most free-boundary problems, the study of large deformations is 
amenable only to numerical study. A powerful method for solving Stokes flow 
problems is the boundary integral method (Youngren & Acrivos 1975). The 
technique has been applied to several aspects of the single-phase drop deformation 
problem (Rallison & Acrivos 1978; Rallison 1980; Stone & Leal 1989a), in addition 
to a variety of other free-boundary studies (Lee & Leal 1982; Sherwood 1988; Stoos 
& Leal 1989). 

The governing equations and boundary conditions are outlined in $2. The general 
solution to the quasi-steady Stokes equation in the three phases may be written as 

(19) 

where S represents all the bounding surfaces for phase i, n, is the unit outward normal 
from phase i (see figure l ) ,  and u, = 0 for phase 2 and phase 3. In  this equation the 
kernels J and K are defined as 

ui (x )  = u,(x) + ls J -  Ti -ni dX(y) + Js u i - K .  ni dX(y), 
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We proceed by taking the limit of (19) as x-+x,ES,~ from phase 1 and phase 2, 
respectively. Making use of the continuity of the single layer and the jump condition 
for the double layer (Ladyzhenskaya 1969), thus results in the two equations 

J. T,.n,dS- u,-K.n,dS, (20) 1% s,,, 
i,,, 

tu,(xs) = U&S) - 

$u,(x,) = Js,, J-T, .n ,dS+ J-T, .n ,dS 

u,.K.n,dS+ u,-K.n,dS. (21) 

These equations are valid for x,ES,,. The integrands in the integrals over S,, are 
singular, but the integrals themselves are integrable in the sense of a Cauchy 
principal value. The integrals over S,, are non-singular. 

Multiplying (21) by A,,, adding to (20) and making use of the boundary conditions 
on the velocity and stress fields a t  the X,, surface gives 

i +J% s,, 

1 
f ( 1  +A, l )u l (~ , )  = um(xs)---  J.n,(V;n,)dX l.s21 

1 u, . K-n, dX+ A,, - (1 - 
s2* 

This equation describes the velocity u, a t  the S,, interface in terms of integrals over 
both interfaces. Unlike the single-phase droplet deformation problem where only the 
surface curvature V,.n is necessary to determine the interface evolution (Rallison & 
Acrivos 1978), in this multiphase droplet problem the velocity and stress on the 
second interface are needed also. 

In a similar manner, taking the limit of (19) as x i  x, ES,, from phase 2 and phase 
3 results in the t w o  equations 

~u,(x,) 1 = Js2, J. T,.n,dS+ls32 J. T,.n,dS 

+Iszl u, .K.n ,dS+l .~~,u , .K.n ,dS,  (23) 

(24) 

Multiplying (24) by A,,, adding to (23) and using the boundary conditions at S,, 
yields 

tu,(x,) = - IS3% J .  n3 dS - Js3, us. K. n3 dS. 

+Is,, J. T,.n, dS  + Is2, u, K .  n, dS. (25) 

Equations (20) ,  (22), (24) and (25)  represent four integral equations for the four 
unknowns, u, and T,.n, for x,ES,, and u, and q - n ,  for x,ES,,. If u,, C,, the fluid 
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properties (A,,, A,, and 52) and the shapes of the fluid-fluid interfaces are specified, 
then these equations can be used to solve uniquely for the interfacial velocities. The 
evolution of the interfaces is followed using the kinematic conditions (6) and, 
consequently, the globule shape is determined for all times by an initial condition 
and the time history of the flow (Rallison 1984). 

This system of equations is coupled ; for example, determination of u, requires 
knowledge of us and vice versa. The basic numerical procedure for this problem is 
similar to the one used in our earlier time-dependent studies of drop relaxation and 
breakup (Stone & Leal 1 9 8 9 ~ ) .  Rather than repeating the details here, the important 
aspects are summarized below. 

We will consider concentric double emulsion drops and axisymmetric flows, where 
u, is given by (3). In  such cases, the azimuthal (8) integration can be performed 
analytically and the surface integrals are reduced to line integrals. The resulting 
integral equations are solved by discretizing each of the interfaces into 2N-2 elements 
with node points a t  the end of each element. The unknowns (both velocities and 
stresses) are assumed to vary linearly over each element. This representation yields 
smoother and more accurate interfacial velocity and stress distributions than the 
alternative assumption of constant velocity and stress values over each element. 
Typically, for the calculations presented in this paper, we choose N = 15-20. At each 
node point there are four unknowns: two components of velocity (up,u,) and two 
components of stress ( (T.n) , . , (T-n) , ) .  Owing to the fore-aft symmetry of the 
extensional flow, the net number of unknowns is halved so that the largest linear 
system generated is 160 x 160. This linear system of equations is solved by Gaussian 
elimination. 

The drop shapes are represented accurately by parameterizing each interface using 
a normalized measure of arclength, s (0 < s < l),  and describing the location of the 
surface node points with the cylindrical coordinates r ( s )  and z (s ) .  Cubic splines are 
used to generate twice-continuously differentiable representations of the drop shape. 
The unit normals and curvature (V,.n) are calculated from the cubic spline 
representation. 

After the interfacial velocities arc calculated, the kinematic condition is used to 
update the interface shape. A simple Euler method is used for this purpose. Velocities 
are typically O( lop3) so that the timestep chosen is typically At = 0.3-0.5. After each 
iteration, the collocation points are redistributed evenly, based upon arclength, 
along the interface. This minimizes convection of points that leads to uneven node 
point distributions and is a principal cause of numerical difficulties. A typical 
simulation to determine the deformation parameter D as a function of capillary 
number requires approximately 5000 iterations to map the entire steady deformation 
curve. Choosing N = 20, one iteration takes about one minute of CPU time on a SUN 
3/160 workstation with a floating-point accelerator and using additional node points 
yields the same results. The steady shapes are calculated by requiring the normal 
velocities on both interfaces to be typically less than 2 x 10p4-3 x lop4 at  each node 
point. In  our previous numerical studies of drop deformation, concentrating the 
boundary elements in regions of large curvature improved the accuracy and, indeed, 
was necessary for following dynamics of drop breakup. However, no such 
implementation is introduced for the drop shapes typical of this study. 

The numerical algorithm has been checked against the analytical resulbs of 
Barthks-Biesel & Acrivos (1973 a )  for the deformation of single-phase droplets in 
axisymmetric extensional flows (this comparison is reported in Stone & Leal 1 9 8 9 ~ ) .  
The agreement is excellent. Comparison with the small deformation analysis 
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presented in $4 is shown in the results section that follows. The volumes of both the 
inner and outer droplets are monitored as time progresses and for A,, = 0(1) and 
A,, = O(1) are found to change by less than 1 Yo over several thousand iterations. As 
other researchers have found, larger volume changes occur for smaller A,  say A x 0.1 
or smaller. 

6. Numerical study of finite deformation : results 
In this section we summarize our numerical observations of the deformation and 

breakup of double emulsion droplets in axisymmetric extensional flows. Both steady- 
state and time-dependent effects are discussed. 

We begin our discussion with a short comparison of the numerical results with the 
small deformation analysis from $4. In figure 9 the differences between the 
numerically predicted deformations of the inner and outer surfaces and the 
analytically calculated deformations (D,,,,, -Dtheory) are plotted as a function of 
capillary number for a uniaxial extensional flow and several different combinations 
of A,,, A,,, K and 52. Beginning with a spherical initial shape, the capillary number is 
increased in small increments (typically ACo = 0.005), the steady shape is calculated 
and then the capillary number is incremented again. As discussed in $4, a double 
emulsion globule placed in a uniaxial extensional flow will deform into a prolate 
ellipsoidal shape (D > 0) and a t  steady state the inner droplet will deform into an 
oblate ellipsoidal shape (D < 0). In  figure 9 the basic trend is good agreement 
between the numerical results and the analytical theory for sufficiently small 
capillary numbers. However, as the capillary number is increased, the analytical 
theory consistently underpredicts the numerical values of D for the outer shape and 
overpredicts the deformation of the inner surface. The level of agreement shown in 
figure 9 is comparable to that found earlier for single-phase drops. Although it gives 
insight, the small deformation analysis of $4 is quantitatively limited even for 
relatively small values of C and for the remainder of this paper we will use numerical 
simulations t,o focus on the effects of finite deformation. 

Steady state shapes characteristic of the early stages of deformation were shown 
in figures 3 and 4, so we next consider the time-dependent response of these 
multiphase droplets to step changes in shear rate for a uniaxial extensional flow. 
Figure 10 shows plots of the deformation of the inner and outer interfaces as a 
function of time for the case of a step change in shear rate from Co = 0.04+ C0 = 
0.08. The other parameters are A,, = A,, = 1.0,Q = 1.0 and K = 0.5. 

The initial response of the globule to the step change in shear rate is to lengthen 
along the z-direction. This stretching process sets up a transient uniaxial stretching 
flow internal to the globule that results initially in a corresponding stretching of the 
inner droplet. Because the inner droplet has been deformed into an oblate spheroidal 
shape owing to the biaxial character of the initial steady flow in the annular region, 
the effect of this transient stretching process is to decrease the degree of deformation 
of the inner droplet. In  other words, the inner droplet begins with a steady oblate 
shape and responds to the step change by deforming towards a spherical shape. 
However, as the new steady globule shape is approached, the flow in the annular 
region becomes a recirculating vortical motion and the inner droplet once again 
begins to stretch into an oblate spheroidal shape owing to the biaxial character of the 
flow (figures 2 and 3).  Overall, the outer interface monotonically approaches the new 
steady shape, while the inner droplet relaxes initially then rapidly deforms back 
toward an oblate shape, until it finally asymptotically approaches a new steady 
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C0 = 0.08 by beginning with a spherical initial shape and making small increments 
in the capillary number (A@, = 0.005). Clearly, the same steady shape is determined 
using either large or small increments in the capillary number. The behaviour 
described above is typical of transient deformation below the critical capillary 
number. 
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FIGURE 1 1 .  Complete numerical simulation of deformation as a function of the capillary number 
in a uniaxial extensional flow. A,, = A,, = 1.0,Q = 1 . 0 , ~  = 0.5. Several numerically generated 
steady shapes are included. The upper solid line represents Do,,,, ws. Co, the lower solid line 
represents (Dinnerl ws. C0 and the symbols are predictions of the small deformation theory. The 
dashed curve represents the deformation of a single-phase droplet of comparable viscosity. The 
curves are stopped when breakup is indicated by continuous stretching of the droplet. 

We next address finite deformation and breakup of compound drops. In figure 11 
the solid curve shows a complete numerical simulation of the steady-state globule 
deformation as a function of capillary number for a uniaxial extensional flow (Azl  = 
A,, = 1.0,52 = 1.0 and K = 0.5). The dashed curve is the equivalent single-phase 
droplet deformation and the lower solid curve is the absolute value of the 
deformation of the inner droplet. Numerically generated shapes are also shown. The 
numerical simulation is stopped when a steady shape can no longer be achieved and 
the globule begins to stretch continuously. The symbols are the theoretical results 
from $4. 

As mentioned above, the small deformation theory provides a good approximation 
to  the actual deformation a t  small capillary numbers. In  this range, the deformation 
of the globule is larger with the occluded droplet present than without i t  present. It 
can be seen in figure 11 that this increase of deformation is maintained over the whole 
range of capillary numbers up to the critical value, C0 z 0.116. At this point, the 
globule begins to undergo a continuous stretching process so that breakup is 
characterized in this case by the non-existence of a steady shape. The numerical 
results indicate that the critical capillary number for breakup is slightly lower with 
the inner droplet present than without it. This was first suggested on the basis of 
small deformation theory by Davis & Brenner (1981) and also by the analysis of $4. 
However, it should be clear that the linear theory presented in $534 is no longer 
valid near the critical capillary number where finite deformation has occurred. Also, 
the numerical calculations indicate that the globule has a slightly more extended 
final steady shape than the corresponding single-phase drop. However, the difference 
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relative to the single-phase drop is small and because the determination of the steady 
shape is difficult as the critical capillary number is approached, the result mainly 
indicates that the overall globule shape changes relatively little owing to the presence 
of the occluded particle. Nevertheless, it, is easier to break. In this simulation the 
critical capillary number necessary for breakup is reduced by approximately 5 % 
from the single-phase drop result. 

Finally, we mention the behaviour of the inner droplet. The steady-state velocity 
field in the annular region will be biaxial in nature. The deformation of the inner 
droplet increases monotonically until its deformation levels off and then even 
decreases slightly near the critical capillary number. Overall, however, there is very 
little distortion of the inner drop. in part because the inner capillary number is 
smaller than the outer capillary numbsr (Ci = 0.5@,). Nevertheless, the levelling off 
of the deformation is due to a combinatioli of hydrodynamic interaction between the 
finitely deformed fluid-fluid interfaces and the consequent effect the deformed 
interface shapes have on the velocity field internal to  the globule. These observations 
suggest that the relevant effective capillary number for the inner drop is more 
appropriately of the form Cieff = /3GR,,u2/a,,, where /3 represents the decrease of the 
internal velocity gradient from O ( G )  to O(PG), /3 < 1. Although useful conceptually, 
this idea has not provided additional quantitative predictions. 

In  order to examine the dynamics of breakup, figure 12 presents the dimensionless 
globule length, Louter/Bl, as a function of time a t  the critical capillary number (the 
solid curve). The evolution of the dimensionless inner droplet length, Llnner/R2, is also 
plotted in this figure (the dashed curve), along with numerically generated shapes. 
The slow initial extension and the extended character of the globule are similar to 
observations of single-phase droplets at the critical capillary number. The midsection 
becomes cylindrical and as the globule becomes more extended it stretches more 
rapidly. As the globule stretches, the flow field internal to the globule is extensional 
also, so that the inner droplet begins to lengthen slightly and deforms int,o a prolate 
spheroidal shape, although the overall inner deformation is much smaller in this case 
than for the globule. However, the thinning of the globule occurs more rapidly than 
the inner droplet can deform and the result is the formation of a very thin film 
between the two interfaces. Shortly after the final shape illustrated, the numerical 
scheme begins to introduce unrealistic oscillations on the inner surface. Additional 
collocation points are necessary to describe accurately the variations in interfacial 
velocity and stress that occur for these elongated globules with thin films between 
the surfaces. However, the formation of a thin-film configuration for this particular 
set of dimensionless parameters suggests the possibility of breakup of the extended 
globule owing to fracture a t  the middle induced by the presence of the inner droplet. 
This mode of breakup clearly has no counterpart in the case of a single-phase drop, 
which previous studies have shown to stretch continuously to a very thin thread in 
the presence of a steady, uniaxial extensional flow a t  the critical capillary number. 
Another possibility suggested by this simulation is that the inner droplet would also 
stretch sufficiently so that, a t  later times, the globule would begin to approach a 
configuration similar to a concentric multiphase fluid cylinder. However, a t  least for 
the case considered in figure 12, it appears that  breakup due to  pinching about the 
occluded particle occurs instead. 

In figure 13 we present another complete simulation of the steady-state 
deformation curve for a double emulsion drop in the case A,, = l .O,A,, = 10.0,O = 
1.0 and K = 0.5 (so Ci = 0.5C0). Here we specifically examine the effect of a large 
viscosity of the occluded particle. The two solid curves represent the deformation of 
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FIGURE 12. Globule length versus time for elongation at a slightly supercritical capillary number. 
The solid curve is the globule length LOut,,/R, and the dashed curve is the length of the inner droplet 
Linner lRz .  
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the outer and inner surfaces. The short dashed line is the deformation of a single- 
phase drop with h = 1.0 and the long dashed line is the deformation of a single-phase 
drop with h = 10.0 (for single-phase drops h represents the ratio of drop viscosity to 
suspending fluid viscosity). We observe that the critical capillary number for 
breakup of the globule is bounded by the single-phase results. The inner drop 
deforms monotonically until the critical capillary number is approached a t  which 
point the deformation levels off and decreases a little. This is similar to the 
deformation shown in figure 11. We also see that the single-phase drop with A = 10.0 
is initially less deformed than the double emulsion drop, but as the capillary number 
is increased the single-phase drop deforms more and breaks at  a lower capillary 
number. 

The effect on globule deformation of varying A,, is illustrated clearly in figure 14. 
Although the magnitude of the final steady-state distortions differ by a small 
amount, i t  is noteworthy that the globule (DoUte.) is always more deformed for larger 
viscosities of the internal droplet, as suggested by the small deformation analysis. 
Also, it is evident that as the viscosity of the inner droplet is increased the critical 
capillary number needed for breakup of the globule decreases slightly. In all of the 
cases considered in figure 14, breakup occurs via the continuous stretching process 
that is characteristic of the non-existence of a steady shape, as shown in figure 12. 
Although the critical capillary numbtx does not change much relative to the single- 
phase drop, it is important to keep in mind the fundamental change which occurs in 
the mode of brcakup. For example, the degree of extension necessary to produce 
breakup with the occluded drop present is generally going to be much lower than 
that necessary for a single-phase drop, and this could have important implications 
in the design of emulsifiers or flow systems to transport multiphase drops. 

In figure 15 we examine the deformation and breakup of a globule containing a 
large internal droplet. For this simulation we choose K = 0.8, A,, = 1 .O, A,, = 1.0 and 
62 = 1.0 (C, = 0.8@,). On the plot of deformation versus capillary number, 
numerically generated globule shapes are included to illustrate the interfacial 
evolution As in previous figures thtb effect of the uniaxial extensional flow is to 
deform the outer surface into a prolate spheroidal shape while the inner surface 
becomes oblate spheroidal. However, in this case, a t  a capillary number C0 = 0.066 
the two interfaces numerically make contact a t  the globule centre. The calculations 
are stopped a t  this point. Physically, the numerical contact of the two interfaces 
suggests breakup of the globule as a consequence of the inner droplet breaking 
through the outer surface. The breakup of the globule occurs in this case without any 
large-scale stretching and at  a critical capillary number that is much lower than 
would be found for a single-phase drop with the same properties as the suspending 
fluid. Furthermore, unlike previous cases where ‘breakup ’ has been identified with 
the non-existence of steady solutions, leading to time-dependent stretching of the 
globule and only eventually to breakup via instability of the thin thread, ‘breakup’ 
here would presumably occur rapidly without further extension of the drop owing to  
breakdown of the thin film. In other words, incompatibility of the steady inner and 
outer intcrfacc shapes leads to globule burst, even though the globule is only 
modestly deformed. Although the numerical simulations cannot capture the actual 
breakup process since intermolecular forces that become important a t  small 
separations are not included, this example demonstrates a second mechanism of 
globule breakup that may be important for large K .  

The effect of K on globule deformation and the critical capillary number for breakup 
is illustrated in figure 16. Clearly, the conjecture, based on the small deformation 



Breakup of concentric double emulsion droplets in linear JEows 149 

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 

FIGURE 14. The effect of A,, on drop deformation and the critical capillary number for breakup. 
A,, = 1.0,Q = 1.0 and K = 0.5. 
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FIGURE 15. 
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c, 

Az1 = A,, = 1.0,sZ = 1.0 and K = 0.8. 
Deformation as a function of capillary number for a large internal droplet. 



150 H .  A .  Stone and L. G .  Leal 

L 

0.35 - 

0.30 - 

0.25 - 
DO",,, 

0.20 - 

0.15 - 

0.10 - 

0.05 - 

FIGURE 16. The effect of K on the deformation as a function of capillary number and effect on the 
critical capillary number necessary for breakup. The low capillary number for breakup at K = 0.8 
is a consequence of the inner drop making contact with the outer surface. In the K = 0.7 simulation, 
a narrow film is formed between the inner and outer interfaces simultaneously with large globule 
deformation and it is not clear which of the two breakup mechanisms described in the t,ext occurs 
first. 

analysis, that the presence of the occluded particle leads to lower capillary numbers 
for breakup, is true. However, as illustrated in figure 15, the very low critical 
capillary number for breakup a t  K = 0.8 is not a consequence of large deformation 
of the globule, but rather occurs owing to the inner drop making contact with the 
outer surface. Meanwhile, in the K = 0.7 simulation, a very narrow film is formed 
between the two interfaces simultaneously with large globule deformation and it is 
not clear which of the two breakup mechanisms occurs first. 

Finally, as an illustration of effects of flow-type and large internal capillary 
numbers, Ci, we consider the case of a globule suspended in a biaxial extensional 
flow. Figure 17 shows the deformation plotted versus capillary number and includes 
intermediate steady shapes typical of the deformation process. The parameters 
chosen are A,, = A,, = 1 . 0 , ~  = 0.5 and 52 = 0.1 (Ci = KO). The biaxial flow deforms 
the globule into an oblate spheroidal shape and the steady uniaxial flow established 
in the annular region deforms the inner drop into a prolate spheroidal shape. Because 
lower capillary numbers are needed for breakup of a drop in uniaxial extensional 
flows, we have purposely chosen a low value of 52. Clearly, the outer droplet deforms 
very little. However, viscous stresses generated internal to the globule stretch the 
occluded droplet into a rather extended prolate spheroid. The low value of 52 (hence 
a larger internal effective capillary number Ci = 5@,), coupled with the uniaxial 
nature of the flow field in the annular region produces a large distortion of the inner 
droplet. Indeed, the deformation of the inner droplet is approaching the most highly 
deformed steady shape observed for a single-phase drop suspended in an unbounded 
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@o 

FIGURE 17.  Deformation of a double emulsion droplet in a biaxial extensional flow. 
,Iel = Aas = 1 . 0 , ~  = 0.5 and Q = 0.1. 

uniaxial extensional flow. This suggests that the inner drop may undergo breakup 
even though the outer drop is itself not very deformed. Shortly after the final steady 
shape shown the numerical scheme begins to break down and additional collocation 
points and a smaller timestep are necessary to continue the calculations further. 
Nevertheless, this example illustrates that, in some instances, the effect of flow-type 
coupled with the flow-induced deformation internal to the double emulsion droplet 
can produce large distortions and possibly internal breakup. 

7. Conclusions 
The analytic and numerical results presented above describe the deformation and 

possible breakup mechanisms of double emulsion droplets in extensional flows. The 
simulations provide insight as to when analogies with single-phase droplet behaviour 
may be useful. With the exception of figure 17, the numerical calculations have been 
limited to the case when the internal capillary number is small. Nevertheless, two 
distinct mechanisms of globule breakup have been suggested, both having in 
common the feature that the inner drop appears as an ‘obstacle’ for the outer 
interface. The effect of large internal capillary numbers has not been systematically 
studied. 

From this work, the following conclusions and observations can be drawn : 
(i) A uniaxial extensional flow deforms the globule into a prolate spheroidal shape 

while the steady recirculating flow generated in the annular region deforms the 
occluded drop into an oblate spheroidal shape. The reverse holds for a globule placed 
in a biaxial extensional flow. 

(ii) The effective viscosity of a dilute emulsion of compound drops behaves like a 
suspension of solid spheres in the limit of almost equal-sized inner and encapsulating 
drops, K + 1. 
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(iii) The presence of the internal droplet produces breakup a t  a lower value of the 
capillary number than is necessary if no third phase is present. Also, as the viscosity 
of the occluded phase is increased, the critical capillary number for breakup 
decreases. 

(iv) Although a complete study of variations in viscosity ratio has not been 
undertaken, the simulations with A,, = O( I )  and A,, = O( 1) suggest that for K < 0.5 
breakup of the globule occurs by a continuous stretching mode. However, for K z 0.8 
the inner and outer interfaces make contact even though the globule is not very 
deformed (incompatibility of steady interface shapes). 

(v) The application of a biaxial flow produces a uniaxial flow internal to the 
globule that is capable of producing large distortions of the occluded drop. For a low 
value of the interfacial tension of the inner drop (SZ = O . l ) ,  a simulation is illustrated 
suggesting breakup of the inner phase even though the outer drop is not very 
deformed. 

This work was supported by a grant to L. G. L. from the fluid mechanics program 
of the National Science Foundation. H. A. S. was partially supported through an IBM 
Graduate Research Fellowship. 

Appendix A 
In this Appendix we present some of the details of the solution for the velocity 

fields interior and exterior to the double emulsion drop. The basic equations and 
boundary conditions are given in $3. 

At steady state the kinematic condition (6) a t  S,, is ni-u, = ni-u, = 0 for x, = 
ni, r = 1, which yields 

1+$,-3C, = 2F2+'$,-3C,+&H2 = 0, 

and continuity of the tangential velocity a t  S,, requires 

1 + 2C', = 2F2 + 2C, + &Hz, 

$+D,  = G,+D,. 

The kinematic and continuity of velocity conditions a t  S,, yield the relationships 

1 3 3K3 3K3 ~ K I / : + - B ~ - - C ~ + - H ~  = ~KF,+-H, = 0, 
2 K 2  K4  21 21 

1 
K2 

KQ, +-D, = K G ~ .  

Finally, the tangential stress balance a t  the two interfaces provides the four 
equations 

2+B1-  16C, = h2,(4F2+B,- 16C2+gH,),  D ,  = AzlD,, 

1 16 1 6 ~ ~  1 6 ~ '  
4 R 2 + ~ B 2 - - C 2 + - H 2  K K5 21 = A32(41?3+-H3), 21 D, = 0. 
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It is immediately evident a t  this point that 

D, = 0, D, = 0, G ,  = + = G3. 
The complete solution of the remaining 8 equat,ions for the 8 remaining unknowns 

requires tedious algebra. The results are : 

- 5 ,  1 K3 3 ( 4 - 2 5 ~ ~ + 4 2 ~ ~ - 2 5 ~ ~  +4K1')+- (15 - 4 2 K 2  + 3 5 K 4  - 8 K 7 )  

K3 
71+- 

B, = [ 
1 +A,, 72 

I, K3 3 [ K 3 ( l o -  1 4 K 2  + 4 K 7 )  +- 2( - 3  + 7 K 2  - 4 ~ ~ )  

TI+- 72 

1 + A,, 
K3 

B, = 

+'32 

K3 ( 4 - 2 5 K 3  + 4 2 K 5  - 2 5 K 7  + 4K1') +-- (16 - 4 2 ~ '  + 3 5 K 4  - 8 ~ ~ )  

K3 
I-, 2 1  c, = 

71+- 7'2 

K3 ~ ~ ( 3 - 5 ~ ' + 2 ~ ~ ) + -  K2( - 3 f 7 K 2  - 4 K 5 )  
c, = 

K3 
3 

71+- 72 
1 + A32 

7 K 2 (  1 - K 2 ) ]  
K 3  

( 2  - 7 K 5  + 5~') +- 

71+- 7 2  

+A,, 
K3 

, F = -  
2 

+ '32 

71 +- TZ 
+'3Z 

I, K3 (2  - 5 K 3  + 3 K 5 )  + - 3(1 -~ , )  

K3 
71 +- 

H ,  = 

1 +A,, 72 

( -  3-k 7 K 2  - 7 K 5 +  3 K 7 )  
21 

K 2 ( 1  + H ,  = 
K3 

, 

where ?Il = ( 4 - 2 5 ~ ~ + 4 2 ~ ~ - 2 2 5 ~ ~ + 4 K ~ ' ) + A , , ( 4 -  ~ O K , +  10K7-4Ki0), 

qz = ( 1 5 - 4 2 ~ ~ + 3 5 ~ ~ - 8 ~ ~ ) + A ~ ~ ( 6 -  1 4 ~ ~ + 8 ~ ~ ) .  

The steady-state velocity field thus calculated is a uniformly valid first 
approximation to the flow field for all values of K ,  A,, and A,,, provided the interface 
deformation is small. However, as is clear from the related analysis of the single- 
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phase droplet deformation problem, this velocity field is not sufficient to calculate 
the first correction to the drop shapes for very viscous droplets, either A,, 9 1 or 
A,, 9 1. This is because the next term in an asymptotic expansion for the velocity field 
makes an order-one contribution in the normal stress balance if the viscosity ratio is 
large (Barthes-Biesel & Acrivos 1973a; Rallison 1980; Davis & Brenner 1981). We 
have not calculated this correction and have relegated the effect of large viscosity 
ratios to the numerical investigation that is reported in 995-6. 

If we consider the case where A,, = 0 ( 1 )  and A,, = 0 ( 1 ) ,  then for C -4 1 the velocity 
field just determined can be used in the normal stress balance to calculate the first 
correction to the drop shape. Equations ( 5 d ,  e )  and ( I la ,  b )  relate the constant 
pressures by 

0 2  P --+p*7 - Co 

P: = ( 2 + : ) k + P a ,  

and provide the two additional equations that are necessary to determine the shape 
correction functions A, ,  and A,, at this leading order of approximation, 

4 A - - A , ,  Q2--B2+-C --€I - A  4 3  --H =- 
3 24 3K2 3 K 2  452 
K3 K5 21 ',( 21 ') @ o h 2 1 K  3 2 - @ i  

Using these equations the shape correction functions A,, and A,, may be expressed 
in the form 

= acoh21(K, 

where 

h,, = 5 + [ - (6+  4AZ1) 4- ( 3 0 ~ ' - - 2 4 ~ ~ )  (1  -A21)]F2 
+ [ ( - 3 + 6 3 ~ ~ - 6 0 ~ ~ )  (1  - A , , ) ] H , + ( - 3 0 ~ ~ + 2 4 ~ ~ )  (1-A2,)F3 
+ ( - 6 3 ~ ~  + 6 0 ~ ~ )  ( 1  -A2 , )  H,,  

and h,, = 10F2 - (6  + 4A3,) F3 - 3 K 2 (  1 - A,,) H,. 

Appendix B 

velocity and pressure fields reported in 93. They are: 
In this Appendix we report the form of the stress fields corresponding to the 

* x  x + x ( E * x )  -5 x x ( x . E . x )  I+.,[ - 2 o y  T 1 ( X )  = 2E+B,[(E r5 r7 

x(E.  x) 10/(x'€. x) x x ( x - E . x )  
+70 -20-- 

- 3 4  r5 

r7 r7 

x(o A x) + (o A x) x 
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* x)x + x(€ * x) xx(x. € * x) -5  
r7 

T,(x)  = 4F2E+R, 

+ 4 q  
x ( € *  x) 

-20-- 10 
r’ 

x(o A x) + (a A x) x 
- 3 0 2  [ r5 

/(x. €. x) + ,* xx(x - E .  x) 
r7 r9 r5 

] + H,[&,x(E. x) + (€* x) x] 

+ +2€- $/(x. €. x)] 

T3(x) = 4F3€+H3[&[x(€ .x)  + ( € . x ) x ] + ~ r 2 E - $ / ( x . E . x ) ] .  
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